
 

 

 

Final Report                             

 

July 2023  

Student Project No. 21140029 

Title: High throughput sequencing to measure changes in soil biology 

in response to long-term management practices 

Matias Fernandez1,2, Ian Adams1, Joana Vicente1, John Elphinstone1 and 

Matthew Goddard2 

1Fera Science Ltd, YO41 1LZ, UK  

2The School of Life Sciences, The University of Lincoln, LN6 7DL, UK 

 

Supervisors: 
Dr. Ian Adams, Dr. Joana Vicente, Dr. John Elphinstone and Prof. Matthew Goddard 

 
 
Student Report No: 57 
 
 
 
This is the final report of a PhD project that ran from August 2018 to December 2021. The work 
was funded by AHDB and BBRO as part of the Soil Biology and Soil Health Partnership 
(91140002). Work covered in this report links in with project 91140002-05. 
  

While the Agriculture and Horticulture Development Board seeks to ensure that the information contained 

within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the 

maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for 

loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or 

indirectly in relation to information and opinions contained in or omitted from this document. 

 

Reference herein to trade names and proprietary products without stating that they are protected does not 

imply that they may be regarded as unprotected and thus free for general use. No endorsement of named 

products is intended, nor is any criticism implied of other alternative, but unnamed, products.



 

i 
 

 

1. INDUSTRY SUMMARY ..................................................................................................... 1 

2. INTRODUCTION ............................................................................................................... 2 

2.1. Effect of soil management on soil microbiology ................................................ 2 

2.2. Role of molecular biology in monitoring soil microbiology .............................. 2 

3. MATERIALS AND METHODS .......................................................................................... 3 

3.1. Method optimisation ............................................................................................ 3 

3.1.1. Soil sampling and DNA extraction .................................................................... 3 

3.1.2. Metabarcoding ................................................................................................. 6 

3.1.3. Data analysis ................................................................................................... 7 

3.2. Standardised pipeline for analysis of combined data across different trials ... 7 

3.3. Correlations between microscopic observation and metabarcoding of 

mesofauna diversity ........................................................................................................ 9 

3.3.1. Metabarcoding ................................................................................................. 9 

3.3.2. Data analysis ................................................................................................. 10 

4. RESULTS ........................................................................................................................ 10 

4.1. Effect of long-term pH manipulations on soil bacterial and fungal diversity . 10 

4.2. Effect of long-term fertiliser application on soil bacterial and fungal diversity

 17 

4.3. Standardised approach for combined analyses of the relative effects of pH 

and fertiliser across both trials ..................................................................................... 19 

4.4. Long-term effects of organic amendments on soil bacterial and fungal 

diversity .......................................................................................................................... 24 

4.5. Long-term effects of different tillage approaches on soil bacterial and fungal 

diversity, in two sampling years ................................................................................... 29 

4.6. Effects of sampling season on soil bacterial and fungal diversity ................. 31 

4.7. Long-term effects of re-ridging and inter-row companion crops or mulching 

on soil bacterial and fungal diversity in asparagus production ................................. 33 

4.8. Long-term effects of drainage on soil bacterial and fungal diversity ............. 37 

4.9. Correlations between microscopic observation and metabarcoding of 

mesofauna diversity ...................................................................................................... 39 

5. DISCUSSION .................................................................................................................. 43 



 
 

  ii  

5.1. Effect of long-term pH management on the soil microbiome .......................... 43 

5.2. Effects of long-term inorganic fertiliser application on the soil microbiome . 44 

5.3. Effect of long-term organic amendments on the soil microbiome .................. 44 

5.4. Effect of sampling time and management practices on the soil microbiome 45 

5.5. Long-term effects of re-ridging and inter-row companion crops or mulching 

on soil bacterial and fungal diversity in asparagus production ................................. 45 

5.6. Standardised approach for combined analyses of the microbiome across 

different studies ............................................................................................................. 45 

5.7. Potential for a molecular soil health testing service for UK growers and 

agronomists. .................................................................................................................. 48 

6. REFERENCES ................................................................................................................ 50 

 

 



 

1 
 

1. Industry Summary 

Biological communities have been described as an important factor in soil health, whether recycling 

nutrients, improving plant growth, suppressing plant pathogenic organisms or forming beneficial 

symbiotic associations with plants.  

The present study aims to improve understanding of the diversity of soil biology and how it responds 

to common management practices within the agricultural sector so that soils can be managed to 

safeguard essential biological functions that ensure crop productivity as well as ecological and 

human sustainability.  

This project aimed to expand the knowledge base on soil health by furthering understanding of the 

effects of common soil management practices (including organic and pH amendments, cultivations, 

crop rotations and cover cropping) on the soil microbiome. The project also aimed to improve grower 

understanding of the importance of the biological component of soil health and the practical 

approaches that can be used to sustain productive soils into the future across rotations that include 

grassland, arable and horticultural crops. 

Soils sampled from various long-term soil management experiments have been analysed to assess 

the effects of routine management practices on the soil microbiome. A combination of six 

experimental sites within the AHDB Soil Biology and Soil Health (SBSH) Partnership were 

investigated to study long-term effects on soil biology of different organic soil amendments (at ADAS-

Terrington, ADAS-Gleadthorpe and Harper Adams University), drainage treatments (at ADAS-

Boxworth), tillage approaches (at GWCT-Loddington), pH levels and fertiliser applications (at SRUC-

Craibstone). Soil biodiversity was analysed using metabarcoding procedures following PCR 

amplification of 16S and ITS rRNA gene markers to assess bacterial and fungal community diversity. 

Analyses were performed using the open-source software bioinformatics pipeline QIIME2 to assess 

the main changes in soil microbiome arising from differences in soil management practices. The data 

show a significant effect of pH on fungal and bacterial communities. Different fertiliser, cropping 

sequence, sampling season, organic amendments, soil compaction, drainage and tillage 

applications also affected soil microbes, but the sizes of these effects were much smaller than for 

pH. However, the striking observation was that agronomic soil managements had less impact on soil 

microbial diversity than the effects of geographical location or season. The main conclusion was 

therefore that natural variation in soil biology, either between soil types at different locations or 

between seasons at the same locations, was much greater than the variation attributed to agronomic 

soil management. The overall effects of agronomic practices on soil biology are therefore likely to 

be location and season specific, meaning that localised monitoring will be required over multiple 

seasons in order to establish best soil management practices for a given location. 
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2. Introduction 

2.1. Effect of soil management on soil microbiology 

Two conventional key soil chemistry management interventions revolve around manipulating crop 

nutrient availability, either indirectly by altering pH or directly via fertiliser addition. Soil pH, which 

defines nutrient availability (Binkley & Vitousek, 1989), is known to be one of the strongest abiotic 

factors driving bacterial and fungal community assemblages in multiple studies (Borneman & Hartin, 

2000; Fierer et al., 2005; Fierer & Jackson, 2006; Rousk et al., 2010) including in agricultural soils 

(Wang et al., 2019). Fertiliser application has also been shown to affect the composition of bacterial 

and certain groups of fungal communities depending on the type of phosphate fertilisation (Silva et 

al., 2017). In addition, there is evidence for the inhibitory effect of triple superphosphate fertiliser on 

mycorrhizal formation (Peine et al., 2019). However, to date, the general effect of fertiliser 

applications on soil bacterial and fungal diversity remains unclear.  

 

Soil management practices have mostly developed with the aim of conserving soil physical structure 

and chemical fertility, but less is known of how they affect soil biological activity. Such practices 

include managing organic matter input amounts and types, minimizing soil structural disturbance 

(e.g. minimum or no tillage cultivations), and maintaining and diversifying plants through mixed 

cropping, crop rotations and/or cover cropping (Larkin, 2015). However, the relative effects of 

traditional and conservation agricultural soil management practices across different regions and soil 

types on biological communities and their functions remain unclear due to the lack of a standardized 

approach for accurately measuring soil biodiversity. As a result, the relationships between soil 

biodiversity, soil management and crop health and productivity remain poorly described. 

 

2.2. Role of molecular biology in monitoring soil microbiology 

Modern high-throughput DNA sequencing and associated bioinformatic tools have the potential to 

comprehensively characterize microbial communities (George et al., 2019; Tedersoo et al., 2020). 

Lauber et al. (2009) were one of the first to use such an approach to describe a correlation between 

soil bacterial community structure and pH from a wide array of ecosystem types. DNA sequencing 

studies have not achieved an agreement on the effect of fertiliser application on bacterial and fungal 

communities: some report fertiliser application increases richness and diversity (Pan et al., 2020; 

Wang et al., 2017) while others found no significant influence of fertilisers (Yao et al., 2018). More 

generally, recent soil DNA sequencing studies have shown significant but small and inconsistent 

differences between fungal (Hannula et al., 2021; Morrison-Whittle et al., 2017) and bacterial 

(Hendgen et al., 2018) diversity in soils under conventional versus conservation agricultural 

management approaches. These include simultaneous analyses of bacteria and fungi (Hartmann et 
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al., 2015), and total soil biology across time and space (Giraldo-Perez et al., 2021), and include 

attempts to analyse the functions of these communities (Harkes et al., 2019). Recent studies have 

also shown how fungal community structure and functionality (Hannula et al., 2021), as well as 

bacterial diversity (Hartmann et al., 2015), have been affected by different long-term agricultural 

practices such as tillage, cover cropping and organic amendments. Moreover, Hannula et al. (2021) 

and Giraldo-Perez et al. (2021) concluded that different components of soil biodiversity responded 

differentially to agricultural practices depending on geographic location and time of year. In general, 

studies to date have focused on different agricultural system types, and only evaluated soils in one 

or a few locations and timepoints and have lacked methodological and analytical standardisation 

making it very hard to cross-compare studies to evaluate any general effects on soil biology.  There 

is an urgent need for a standardised approach for measuring soil biodiversity to allow meaningful 

comparisons and to quantify the effects of soil management practices across agricultural systems, 

climates, and soil types. 

 

3. Materials and methods 

3.1. Method optimisation 

A DNA metabarcoding approach was optimised and trialled to test the extent to which changes in 

bacterial and fungal diversities in response to key soil management practices can be quantified by 

analysing total DNA extracted from the soil. For this, the hypothesis was tested that long-term 

differential pH and fertiliser managements have correspondingly applied varying selection pressures 

on the diversity of soil microbial communities. The standardised approach was then tested by 

comparing microbial communities in soil samples from two of the long-term field trials investigated 

in Project 4 of the SBSH Partnership, that have consistently manipulated pH and inorganic fertiliser 

input in different plots at the Craibstone Estate in Aberdeenshire over the last 50-100 years. In 

addition, new bioinformatic approaches were evaluated to determine whether observed diversity 

within the DNA of microbial communities may be used to predict shifts in their biological functions. 

 

3.1.1. Soil sampling and DNA extraction 

At the start of the project (July 2017) soil was sampled from 21 sites representing all cropping 

rotations and soil types at trial sites across the UK to be studied during the SBSH Partnership (Table 

1; see also the report for Project 4 of the Partnership, 91140002-04). Composite samples of 2 kg of 

soil were collected from each site as multiple 1.5 cm diameter cores collected from the top 10-15 cm 

soil, collected in a ‘W’ pattern transect. Samples were thoroughly mixed to homogeneity after 

collection. Samples were kept refrigerated until required for DNA extraction. 
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Table 1. Soil sampled from different trial sites under various crop rotations and management conditions 

Site  Soil texture 
(% clay) 

Treatments & design 

1.Terrington 
(Tebbs South) 

Silty clay loam 
(28% cl) 

1. Manufactured fertiliser (RB209 
recommendations) 
2. Green compost (@250 kg N/ha; c.25 
t/ha) 
3. Pig FYM (@250 kg N/ha; c.35 t/ha) 
3 replicates (9 plots) 

2.Harper Adams  Sandy loam (12% 
cl) 

1. Manufactured fertiliser (RB209 
recommendations) 
2. Green compost (@250 kg N/ha; c.25 
t/ha) 
3. Cattle FYM (@250 kg N/ha; c.35 t/ha) 
3 replicates (9 plots) 

3.Gleadthorpe 
(Lamb field) 

Loamy sand 
(6% cl) 

1. Manufactured fertiliser (RB209 
recommendations) 
2. 10 t/ha Broiler litter 
3. Green compost (@250 kg N/ha; c.25 
t/ha) 
4. Cattle FYM (@250 kg N/ha; c.35 t/ha) 
5. Cattle slurry (@250 kg N/ha; c.80 
m3/ha) 
3 replicates (15 plots) 

4. Boxworth 
(40 Acres) 

Clay (35% cl)  1. Improved drainage (moled autumn 
2017) 
2. Poor drainage 
6 replicates 

5.Loddington 
(GWCT) 

Clay (40% cl)  1. Zero till (6+ yrs) 
2. Conventional plough 
Tillage treatments to be introduced in 
autumn 2017; 3 and 6 replicate 
treatment areas in 2018 and 2020 
respectively 

6. Craibstone 
(Woodlands field) 

Sandy loam 
(12% cl) 

Large plots (45 x 5m) following the 
rotation: 
Swede, Barley, Hay, Pasture, Pasture, 
Oats 
(each crop present every year) 
2 fertiliser subplots: 
1. No fertiliser 
2. Complete fertiliser + superphosphate 
Soil health assessment to be undertaken in 
4 crops & 2 fertiliser treatments (in bold) 

7. Craibstone 
(Woodlands field) 

Sandy loam 
(12% cl) 

Large plots (45 x 5m) following the 
rotation: 
Potatoes, W. Wheat, Hay, Pasture, 
Pasture, Oats, Swede, S. Barley 
(each crop present every year) 
7 pH subplots 4.5-7.5 in 0.5 increments 
Soil health assessment to be undertaken 
in 4 crops (in bold type) & 4 pH levels (4.5, 
6.0, 6.5 & 7.5) 

 

Three replicate soil samples per plot were collected in October 2018 and 2019 from the pH and 

fertiliser trials at Scotland’s Rural University College (SRUC), Craibstone Estate. Plots in the pH trial 

had been maintained for 50 years at pH gradients from 4.5 – 7.5 by annual application of lime or 

ferric sulphate, as required. Each plot had been annually rotated between potatoes, spring barley, 

swede, spring oats, 3 years of perennial ryegrass/white clover pasture followed by winter wheat, 

such that all rotation stages were grown every year at each pH. Three replicate samples were 

collected in each year after cropping with either wheat, potato, oat or second year pasture from pH 

treatments 4.5, 6.0, 6.5 and 7.5, making a total of 48 samples.  The long-term fertiliser trial comprised 
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six plots annually rotated between barley, the same 3 years of pasture, oats and potatoes with all 

crops grown every year since 1922. Each plot was split with one half treated with complete fertiliser 

and other half remained untreated. The complete fertiliser comprised N as ammonium nitrate, P as 

triple super phosphate (TSP) and K as muriate of potash (MOP). 

 

The soil samples were thoroughly mixed and maintained at 4 °C prior to analysis. Total DNA was 

extracted from 10g sub-samples, within two weeks of sampling, using the DNeasy PowerMax Soil 

Kit (Qiagen, Carlsbad, CA, United States) following the manufacturer’s instructions. The same 

protocol was followed for the other five experimental sites. 

Twelve soil samples were also taken from the STAR project (Sustainability Trial in Arable Rotations), 

a long-term rotational and cultivation study at Stanaway Farm, Otley, Suffolk, UK (52°08'17"N 

1°12'49"E) on a Beccles/Hanslope Series (heavy) clay soil. The experimental plot was uniformly 

cropped with winter wheat in 2018. The objective of this investigation was to measure changes of 

soil biology at two different seasons by sampling soils from the same plots in spring and autumn the 

same year. 

 

In addition, as part of the AHDB Horticulture FV 450/450a long-term asparagus field trial (Mašková 

et al., 2021), 24 soil samples were collected and processed following the above mentioned protocol 

to evaluate the effect of soil disturbances on soil biology. The trial comprised 4 management 

practices: (1) companion crops - Rye (Sereale cecale L var. Protector.) and Mustard (Sinapis alba 

L. var. Severka), (2) interrow surface mulch (Straw and PAS 100 compost) applications in 

combination with shallow soil disturbance (SSD), (3) modifications of the conventional tillage practice 

by not re-ridging (NR) and applying SSD and (4) a zero-tillage option (Table 2). 
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Table 2. Treatments used in the 24 sampled soils from the project AHDB Horticulture FV 450/450a long-term 

asparagus field trial. 

Treatment 
Group 

Treatment Re-ridge 

M PAS100 NR 
M PAS100 NR 
M PAS100 R 
M PAS100 R 
M StrawMulch NR 
M StrawMulch NR 
M StrawMulch R 
M StrawMulch R 

CC Mustard NR 
CC Mustard NR 
CC Mustard R 
CC Mustard R 
CC Rye NR 
CC Rye NR 
CC Rye R 
CC Rye R 

BS NoSSD NR 
BS NoSSD NR 
BS NoSSD R 
BS NoSSD R 
BS SSD NR 
BS SSD NR 
BS SSD R 
BS SSD R 

 

3.1.2. Metabarcoding 

Bacterial and fungal V4-16S and ITS1 rRNA barcodes were amplified from the total extracted DNA 

via PCR using 515F (Parada et al., 2016) and 806R 16S primers (Apprill et al., 2015), and ITS1-

F_KY02 ITS forward primer (Toju et al., 2012) with a modified ITS2 (Table 3). For high throughput 

sequencing of the PCR products, indexed libraries were prepared using Nextera (Illumina) adapters 

following the manufacturer’s protocol. A PhiX internal control was added to the library pool before 

sequencing with 600 cycles reagent kit v3 (2x300 PE) using a MiSeq sequencer (Illumina, San 

Diego, CA, USA). DNA from each trial was sequenced and analysed separately. 

 

Table 3. Primer sequences used for amplifying the bacterial and fungal gene barcode regions that were 

subsequently sequenced using the metabarcoding approach.  

16Sv4 
F 515F  5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA-3’ 

R 806R 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTCTAAT-3’ 

ITS1 
F ITS1-F_KY02 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGAGGAAGTAAAAGTCGTAA-3’ 

R ITS2_Wobble 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCWGYGTTCTTCATCGATG-3’ 
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3.1.3. Data analysis 

Each of the two Craibstone trials was first analysed independently. Sequences of all PCR products 

from amplification of the total fungal and bacterial DNA in each soil sample were compared using 

the microbiome bioinformatics platform QIIME2 v. 2020.6 (Bolyen et al., 2019) complemented with 

various R (R Core Team, 2021) statistics packages. Only 16S and ITS sequence reads >50 bp were 

compared. 16S reads were truncated to 253 bp but ITS reads were not trimmed. Tables of the 

numbers of various amplicon sequence variants (ASVs), with exact sequence matches, were 

compiled using DADA2 software (Callahan et al., 2016).   

 

Taxonomic assignment of each ASV was attempted using a naïve bayes classifier trained with either 

a 16S sequence database (release 138) from SILVA (Quast et al., 2012) or a modified ITS database 

(v. 8.2) from Unite (Nilsson et al., 2018). Only bacterial ASVs that could be recognised at phylum 

level with 70% confidence were further considered. Only fungal ASVs recognised with 95% 

confidence as belonging to the kingdoms Fungi or Stramenopila (including oomycetes) were further 

considered. A full account of the standardised bioinformatics procedures and subsequent statistical 

analyses used has been submitted for publication (Fernadez-Huarte et al, 2022).  

 

3.2. Standardised pipeline for analysis of combined data across different trials  

A standardised approach for comparison of ASV communities between soil samples was based on 

three main classes of soil community metrics, as defined by Morrison-Whittle et al. (2017), Morrison‐

Whittle and Goddard (2018) and Giraldo-Perez et al. (2021), and this comprises the core of the 

standardized analysis proposed here (Figure 1).  These were: 

 

1.  Numbers: Differences in the total number (absolute richness) of different ASVs 

(representing different taxa) and their distribution across sample treatments. 

2. Types: Differences in the presence/absence of different types of taxa (clusters of related 

sequences) between samples. 

3. Abundances: Differences in the relative proportions of taxa between samples inferred by 

sequence read counts. Where significant differences in taxa abundances are revealed, then 

this is followed by Indicator taxa and functional prediction analyses to highlight which taxa 

are significantly overrepresented in particular treatments and what functions are ascribed to 

these. 
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Figure 1. The three standard measures of biodiversity proposed for the soil DNA biodiversity 

standard analysis method following Morrison-Whittle et al. (2017), Morrison‐Whittle and Goddard 

(2018). 

 

Differences in absolute taxa numbers were evaluated with Kruskal-Wallis tests and effect sizes 

calculated with E2 = H/((n2-1)/(n+1)), where n = number of observations and H is the Kruskal-Wallis 

H-test statistic (Tomczak & Tomczak, 2014), and distributions of counts were analysed using 

Shannon (Shannon, 1948) diversities. In addition, phylogeny relatedness within different taxa was 

assessed using Faith’s phylogenetic diversity analysis (Faith, 1992). 

 

Differences in types and abundances of taxa were evaluated using weighted and unweighted 

Jaccard distance matrices respectively with PERMANOVA (Anderson, 2014) with 999 permutations 

to determine pseudo-F ratios to calculate P and R2 estimates of effect sizes. In addition, unweighted 

UniFrac was used to analyse phylogenetic differences between communities, and weighted UniFrac 

that also takes abundances into account giving more weight to most abundant taxa (Lozupone & 

Knight, 2005). 

  

To identify those individual ASVs (potential biomarkers) that were most likely to explain observed 

differences in diversity between soil samples, an algorithm known as LEfSe (Linear discriminant 

analysis Effect Size) was tested (Guo & Gao, 2021; Segata et al., 2011). Further software packages 
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were also evaluated for prediction of possible biological functions from identified ASVs. Bacterial 

functional predictions were estimated using the FAPROTAX tool (Louca et al., 2016) on ASVs 

annotated using the SILVA database. For fungal functional predictions, the FunGuild tool (Nguyen 

et al., 2016) was used on ASVs annotated using the UNITE database. 

 

Analyses of the combined data from both trials were also performed. For comparing datasets from 

different trials, the sequence reads were first independently processed using DADA2, to account for 

potential differences between sequencing runs, prior to merging the datasets for analysis. 

Subsequently, the two generated tables were merged using the ‘table merge’ tool in Qiime2, which 

identifies identical ASVs between tables. To account for minor differences between ASVs from each 

trial, potentially resulting from differences in original orientation or trimmed length, ASVs in the 

merged table were subsequently clustered into groups of greater than 98% genetic identities and 

termed merged ASVs (mASVs) to delineate them from ASVs. mASV representative sequences for 

taxonomic identification were derived by VSEARCH (Rognes et al., 2016) de novo clustering 

approach based on 98% identity threshold. A scaling with ranked subsampling (SRS) normalization 

method was then applied to the merged table (Beule & Karlovsky, 2020) to obtain an identical sample 

size for each data set as required in ecological analysis of taxa count. This SRS normalization 

method provides a more conservative approach than the traditional rarefying approach (random 

subsampling without replacement). 

 

3.3. Correlations between microscopic observation and metabarcoding of 

mesofauna diversity 

A second DNA metabarcoding run was performed with samples from the Craibstone pH trial to test 

the extent to which changes in mesofauna diversities in response to changes in soil pH levels. A 

comparison of results between sequencing and a direct microscopic assessment performed by 

Natural England was carried out to compare the two approaches. 

 

3.3.1. Metabarcoding 

An animal cytochrome oxidase (CO1) barcode was amplified from the total extracted DNA using 

PCR primers mlCOIintF (Leray et al., 2013) and HCO2198 (Vrijenhoek, 1994) (Table 4). For high 

throughput sequencing of the PCR products, indexed libraries were prepared using Nextera 

(Illumina) adapters following the manufacturer’s protocol. A PhiX internal control was added to the 

library pool before sequencing with 600 cycles reagent kit v3 (2x300 PE) using a MiSeq sequencer 

(Illumina, San Diego, CA, USA). DNA from each trial was sequenced and analysed separately. 
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Table 4. Primer sequences used for amplifying the arthropod gene barcode regions that were subsequently 

sequenced using the metabarcoding approach.  

CO1 

F mlCOIintF  5’- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAAACTTCAGGGTGACCAAAAAATCA-3’ 

R HCO2198R 5’- GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGWACWGGWTGAACWGTWTAYCCYCC-3’ 

 

3.3.2. Data analysis 

Analyses were conducted following the standardize pipeline and ASVs were assigned using a naïve 

bayes classifier trained with a CO1 database developed at Fera Science Ltd. Only arthropod ASVs 

recognised at phylum level with 70% confidence were considered. Arthropod ASVs were 

subsequently clustered by VSEARCH (Rognes et al., 2016) de novo clustering based on 97% 

identity threshold to emulate taxonomic assignment at species level.  

 

Differences in taxa numbers were evaluated with Kruskal-Wallis tests and effect sizes calculated 

with E2 = H/((n2-1)/(n+1)), where n = number of observations and H is the Kruskal-Wallis H-test 

statistic (Tomczak & Tomczak, 2014). Data from metabarcoding and microscopy approaches were 

compared according to (a) whether pH level or cropping stage of the rotation significantly affected 

arthropod richness, and (b) whether the results from pairwise tests showed similar patterns of 

differences in richness at species level. Correlations in types of taxa were evaluated with a two-sided 

Mantel test (Mantel, 1967) to identify any correlation between their binary Jaccard distance matrices. 

 

4. Results 

4.1. Effect of long-term pH manipulations on soil bacterial and fungal diversity 

A total of 5,852,860 16S rRNA and 5,291,924 ITS sequence reads were generated from the 48 pH 

trial soil samples which clustered into 8,353 and 4,975 different ASVs assigned to bacteria and fungi-

like organisms respectively. The 16S ASVs were allocated phylogenetically into 38 phyla, 120 

classes, 274 orders, 414 families, and 684 genera. ITS ASVs represented 13 phyla (including the 

phylum Oomycota of the kingdom Stramenopila), 38 classes, 100 orders, 217 families and 394 

genera. 

 

Numbers: As expected, a significant effect of pH extremes on both 16S (P = 0.006) and ITS (P = 

0.0005) ASV numbers was observed (Table 5, Figure 2). Kruskal-Wallis pairwise comparisons 

showed the effect of pH mainly manifested as lower numbers of ASVs at the lower pH of 4.5, with a 

minor significant difference also observed between pH 6 and 7.5 level for ITS ASVs (Figure 2). On 

average, there were 450 fewer 16S ASVs and 135 fewer ITS ASVs from pH 4.5 samples than from 
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samples at the other three pH levels. An average of 27% of the variance in ASV numbers was 

explained by the effect of pH (Table 5). 

 

Table 5. Effect of long-term pH and fertiliser manipulations on soil microbial diversity.  

Treatment pH Fertiliser Differences 

Barcode 16S ITS 16S ITS  

Numbers 
P 0.005 0.001 0.267 0.644 Only pH sig. 

E2 0.230 0.338 - - - 

Type 
P 0.001 0.001 0.017 0.083 

pH sig. effect on both; fertiliser only on 
bacteria 

R2 0.387 0.276 0.056 -  pH ~7x greater size effect on bacteria only 

ASV relative 
abundance 

P 0.001 0.001 0.037 0.001 pH greater sig. 

R2 0.446 0.348 0.06 0.149 pH ~4x greater mean size effect 

The effect of long-term pH and fertiliser manipulations on soil microbial diversity and a comparison of the 

effects. P values from Kruskal-Wallis tests for ASVs richness and PERMANOVA test on binary (types) and 

abundance based Jaccard distances assessing the effect of pH and fertiliser manipulations on bacterial (16S) 

and fungal (ITS) communities. Effect sizes (E2 and R2) for significant differences at P<0.05 (in bold) are shown. 

 

 

 

Figure 2. Boxplots comparing absolute ASV richness derived from bacterial (16S) and fungal (ITS) barcodes. 

Samples were grouped by soil pH level. Kruskal-Wallis pairwise results are indicated where adjusted p-value 

is significant (0 ‘***’, 0.001 ‘**’, 0.01 ‘*’). 
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Types: PERMANOVA analyses revealed significant differences (P = 0.001) in the types of 16S and 

ITS ASVs present at each soil pH level (Table 5) and individual pairwise comparisons showed 

significant differences in the presences of 16S and ITS ASV types between all pH levels (P < 0.001; 

Table 5).  Unweighted UniFrac analyses were also consistent with these findings (Table 6) and on 

average, from the mean of R2 values across PERMANOVA and UniFrac analyses, pH explained 

33% of the variance in the presence of ASV types.  

 

Table 6. Kruskal-Wallis results for Shannon and Faith PD estimated diversities; along with PERMANOVA 

results for UniFrac distances assessing the effects of soil pH and fertiliser application on bacterial (16S) and 

fungal (ITS) communities. Bold font indicates significant values where p-value ≤ 0.05. 

Treatment pH Fertiliser 

Barcode 16S ITS 16S ITS 

Shannon 
P 0.001 0.415 0.268 0.050 

E2 0.308 - - 0.130 

Faith PD 
P 2.75E-05 0.045 0.538 0.488 

E2 0.484 0.115 - - 

Unweighted 

UniFrac 

P 0.001 0.001 0.377 0.26 

R2 0.46 0.315 - - 

Weighted 

UniFrac 

P 0.001 0.001 0.979 0.003 

R2 0.754 0.559 - 0.153 

 

 

Abundances: Significant differences were also observed in the relative abundances of 16S and ITS 

ASVs at all pH levels (P = 0.001, Table 5) and pairwise analyses showed significant differences 

between all pH levels (P < 0.001) and the delineation of bacterial and fungal communities, especially 

at pH 4.5, could be clearly seen in PCoA plots (Figure 3). Again, UniFrac analyses were consistent 

with the signal from analyses of Jaccard dissimilarities, and collectively pH explained an average of 

40% of the variance in ASV relative abundances. 
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Figure 3. Principal Coordinate Analysis (PCoA) based on weighted and unweighted Jaccard distances 

matrices showing differences in relative abundances of 16S and ITS ASVs at each pH level. 

 

Indicator taxa: LEfSe predictions suggested that a total of 1,583 16S and 583 ITS ASVs significantly 

(p.adj < 0.05) differed in abundance between pH levels spanning 21 assigned bacterial phyla (Figure 

4a) and 8 fungal phyla (Figure 4b). The number of 16S ASVs overrepresented at pH 7.5 (671) was 

greater than those at other pH levels (mean = 395.75) and spanned ASVs assigned to ten different 

phyla (Figure 5a). The pattern for fungi was different with larger numbers of ITS ASVs 

overrepresented at both pH 4.5 (204) and 7.5 (181) compared to pH 6 and 6.5 (mean = 145.75, 95 

and 103 at pH 6 and 6.5 respectively; Figure 5b), and the largest number of differentially abundant 

ASVs were assigned to Ascomycota. 
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(a) 

 

(b) 

 
Figure 4. LEfSe prediction at phylum level of (a) 16S and (b) ITS ASVs as potential biomarkers of pH. Each 

predicted biomarker was ranked according to Linear Discriminant Analysis (LDA) effect size.    
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(a) 

    

 (b) 

 

Figure 5. Histograms representing the number of total (a) 16S and (b) ITS ASVs per phylum predicted by 

LEfSe analysis as biomarkers of the different pH levels. “Others” includes a cluster of bacterial phyla, each 

with less than 40 total biomarkers. 
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Functional predictions: Due to the low resolution at species and genus levels using the SILVA 

database, only 12.7% of 16S ASVs could be assigned to a functional group by FAPROTAX. The 

largest assigned groups recognised were aerobic-chemoheterotrophs, animal parasites or 

symbionts, and chemoheterotrophic bacteria (Figure 6a). A greater taxonomic resolution at family, 

genus and species levels allowed 65% of ITS ASVs to be assigned to a trophic mode and guild 

(Figure 6b).  

 

(a)                                                                              (b)  

 

Figure 6. Proportion of (a) 16S and (b) ITS ASVs from the pH trial, assigned to functional groups and trophic 

modes. Bacterial functional groups with less than 0.01 abundance were clustered into the group “Others”. 

Fungal group “Unassigned” also contains ambiguous trophic modes assigned to “Pathotroph-Symbiotroph” 

and “Pathotroph-Saprotroph-Symbiotroph”. 

 

Differential abundance analyses showed that fungal symbiotrophs were significantly (p.adj < 0.05) 

less abundant at pH 4.5 (Figure 7a), and pH 7.5 contained significantly (p.adj < 0.05) more fungal 

pathotrophs than pH 4.5 and 6 (Figure 7b). 
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(a)  

 

(b) 

 

Figure 7.  STAMP plot representing statistical pairwise comparing relative abundances of the trophic modes 

symbiotrophs (a) and pathotrophs (b) at different pH levels. Top bar of each pairwise comparison represent 

the treatment on the left while bottom bars represent the treatment on the right. 

 

4.2. Effect of long-term fertiliser application on soil bacterial and fungal diversity 

The 24 fertiliser trial samples yielded 2,596,928 16S and 2,347,133 ITS sequence reads which 

clustered into 5,188 16S and 3,458 ITS ASVs. 16S ASVs were phylogenetically allocated into 38 

phyla (of which 9 were candidate phyla), 119 classes, 244 orders, 365 families and 568 genera. ITS 

ASVs represented 12 phyla (including the phylum Oomycota of the kingdom Stramenopila), 34 

classes, 87 orders, 191 families and 336 genera. 

 

Numbers: Analyses revealed no significant effect of fertiliser application on 16S or ITS ASV richness 

(P >0.25; Table 5) and this was consistent with Faith-PD analysis.  
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Types: PERMANOVA analyses revealed weakly significant differences between fertiliser treatments 

in the types of 16S ASVs (P = 0.017), which only explained approximately 6% of the variance in 

assigned bacterial types (Table 5). There were no differences in the types of ITS ASV between 

fertiliser treatments (P = 0.083), and unweighted UniFrac analyses revealed no effect of fertiliser 

treatment on either bacteria or fungi (Table 6). 

 

Abundances: There were significant differences between fertiliser treatments in the relative 

abundance of types of both 16S (P = 0.037) and ITS (P = 0.001) ASVs which explained 6% and 15% 

of variance in ASV abundances respectively (Table 4, Figure 8). These analyses were in line with 

weighted UniFrac (P = 0.003) for fungi but not bacteria (P = 0.98) (Table 6). 

 

 

Figure 8. Principal Coordinate Analysis (PCoA) based on weighted and unweighted Jaccard distances 

matrices showing differences in relative abundances of 16S and ITS ASVs. Colours represent soil from plots 

treated with (Blue) or without (Red) fertiliser. 

 

 

Indicator taxa: No 16S ASVs were identified as significantly overrepresented in one or other 

fertiliser treatment. Only 4 fungal Ascomycota ASVs, and one assigned to Mortierella minutissima 

(Mortierellomycota), were significantly associated with the no fertiliser control treatment. 

 

Functional predictions:  No bacterial or fungal function groups were inferred to be overrepresented 

between fertiliser treatments. 
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4.3. Standardised approach for combined analyses of the relative effects of pH 

and fertiliser across both trials 

The newly proposed standard bioinformatics pipeline was used to compare the diversity of bacteria 

and fungi across both Craibstone field trials. To understand which highly similar ASVs were common 

across the two independent trials, ASVs from both trials were merged and normalised together and 

those within 98% similarity were then clustered to form a new data set of merged ASVs, hereafter 

referred to as mASVs. Those mASVs common to both trials could then be selected and the relative 

effects of pH and fertilisation on their numbers, types and relative abundances could be compared 

using this standardised approach. When the distribution of individual mASVs (roughly equivalent to 

species) was considered, all diversity metrics were significantly affected by pH, fertilisation, and trial 

location (Table 7). 

 

Table 7. The effects of long-term pH and fertiliser manipulations and trial site on soil microbial diversity using 

merged mASV datasets. 

Treatment All treatments pH Fertiliser Trial site 

Barcode 16S ITS 16S ITS 16S ITS 16S ITS 

Taxa 
richness 

P 1.44E-05 0.0003 0.001 0.001 0.424 0.644 0.003 0.003 

E2 0.391 0.286 0.315 0.331 - - 0.114 0.116 

Types of 
taxa 

P 0.001 0.001 0.001 0.001 0.032 0.087 0.001 0.001 

R2 0.397 0.302 0.411 0.305 0.056 - 0.100 0.088 

Abundances 
of taxa 

P 0.001 0.001 0.001 0.001 0.033 0.002 0.001 0.001 

R2 0.514 0.362 0.520 0.357 0.063 0.114 0.131 0.097 

The effect of long-term pH and fertiliser manipulations on soil bacterial (16S) and fungal (ITS) communities 

and the differences between pH and fertiliser trials overall and between all treatments from both trials using 

>98% mASVs derived from a merged dataset. P values from Kruskal-Wallis (taxa richness) and PERMANOVA 

tests for taxa types and abundance based Jaccard distances. Significant test statistics at P<0.05 are shown in 

bold and include effect sizes (E2 and R2). 

 

Numbers:  Analyses of the merged dataset indicated significant differences in total numbers of both 

16S and ITS mASVs between all treatments and across both trial sites (P < 0.00026, Figure 9). 

Similar differences were also observed following pairwise comparisons of all treatments when the 

two trials had been analysed separately. As in the previous analyses, no effect of fertiliser treatments 

on 16S or ITS number of mASVs was found. Additional significant differences between 16S number 

of mASVs in the fertiliser treated plots with all pH level groups except 4.5 were observed. However, 

in the case of ITS number of mASVs, fertiliser treated soil differed only with soil from the most 

extreme pH levels (4.5 and 7.5: Figure 9). 
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Figure 9. Boxplots comparing mASV richness for 16S and ITS barcodes from the merged dataset 

across all treatments. Significant differences in numbers of mASVs between treatments as revealed 

by Wilcoxon pairwise tests are shown in blue for between trial and in black for within trial comparisons 

(p-values have been adjusted using the Benjamini-Hochberg method). 

 

 

Types:  PERMANOVA analyses revealed significant differences (P < 0.001) in the types of 16S and 

ITS mASVs present in soil following all treatments, except for the fertiliser treatments which (as in 

the seperate analysis of the fertiliser trial) did not significantly affect the types of ITS mASVs (Table 

7). Approximately 40% of the variance in bacterial types and 30% in fungal types was explained 

overall. These results compare similarly to those obtained from the unmerged analyses of the 

separate pH and fertiliser trials, except that the size of the pH effect was even greater than previously 

estimated. Figure 10 displays the proportion of mASVs overlapping between each of the 6 

treatments, where most unique taxa were found in soil samples with extreme pH levels (4.5 and 7.5).  
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a) 

 

b) 

 

Figure 10. UpSet plots representing the proportion of different 16S (a) and ITS (b) mASVs across two field 

trials as influenced by six different soil management treatments: No fertiliser (NF), complete fertiliser (F), pH 

4.5, pH 6.0, pH 6.5 and pH 7.5. Intersection Size bars show the number of mASVs in common between 

treatments indicated by the dots below. Set Size bars represent the number of observed different mASV 

associated with each soil treatment.  
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Abundances: As with the previous results of analyses of the individual trials, PERMANOVA 

analyses of the merged data set revealed significant differences (P < 0.001) in the relative 

abundances of 16S and ITS mASVs present in soil following all treatments, explaining approximately 

51% of the variance in the relative abundance of bacteria and 36% of fungi-type organisms (Table 

7). These differences were again manifest in PCoA ordination plots (Figure 11) where all pairwise 

analyses revealed significant differences between all treatments (P < 0.033), although pH 4.5 clearly 

had a greater effect than any of the other treatments. The relative abundance of both 16S and ITS 

mASVs from the fertiliser treatments aligned most closely with those from the pH 6.0 treatments, 

reflecting the fact that soil in the fertiliser trial had also measured pH 6.0; again highlighting the 

importance of pH influencing the microbial diversity. Nevertheless, a significant difference in both 

16S and ITS mASV abundances was observed between the two trials at pH 6.0. The effect of 

fertiliser/no fertiliser on relative mASV abundances, was more difficult to distinguish. 

 

 

Figure 11. Principal Coordinate Analysis (PCoA) of the relative abundance of 16S and ITS mASVs based on 

weighted and unweighted Jaccard distance matrices the merged datasets from the two trials. No supplemental 

fertiliser (NF), supplemental fertiliser (F), pH 4.5, pH 6.0, pH 6.5 and pH 7.5. 

 

Figure 12 shows the community composition of the bacterial and fungal microbiomes of the soils in 

both trials to be roughly similar when mASVs were clustered at phylum level, as may be expected 

from trials in close proximation to each other with similar soil types and conditions. Similarly, at this 

taxonomic level, the relative contribution of each phylum to the soil community was similar 

irrespective of pH or fertiliser regime (Figure 13).  
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Figure 12. Comparison of bacterial and fungal diversity across two Craibstone field trials.  

(a) bacterial (left) and fungal (right) community composition: Relative abundance of indicated phyla in all 

samples from the pH trial (inner plot) and fertiliser trial (outer plot) 

(b) the numbers of observed ASVs:  Bar-plots represent the number of ASVs common to both trials (light blue) 

and the number of ASVs exclusive to each (dark blue). 

     

 

Figure 13. Comparison of bacterial (left) and fungal (right) diversity at phylum level across two field trials as 

influenced by different soil management treatments. Treatments represented by inner to outer plots are: (a) 

no fertiliser, (b) complete fertiliser, (c) pH 4.5, (d) pH 6.0, (e) pH 6.5 and (f) pH 7.5. 
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4.4. Long-term effects of organic amendments on soil bacterial and fungal 

diversity 

Estimated diversity of both bacteria and fungi were independently compared across three field trials, 

enabling comparison of any long-term effects of organic amendment treatments on the microbiome.  

Figure 14 shows the community composition of the bacterial and fungal microbiomes of these soils 

to be roughly similar when ASVs were assigned at phylum level, despite the geographical distance 

from each other. However, Figure 15 indicates significant numbers of both 16S and ITS ASVs and 

mASVs that are unique to each site, with only around 5% of ASVs being common to all three sites 

in each case (Figure 15a) but higher proportions of mASVs common to more than one site (Figure 

15b). The highest numbers of unique taxa were found in Gleadthorpe from where a larger number 

of soil samples were analysed compared with the other sites. 

 

(a)            (b) 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Comparison of bacterial and fungal soil community compositions across three long-term organic-

amendment trials.  Relative abundance of assigned phyla to (a)16S and (b) ITS ASVs from all samples 

collected from trials at ADAS Terrington (outer), Harper Adams University (middle) and ADAS Gleadthorpe 

(inner). 
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(a) 16S ASV similarities     (b) ITS ASV similarities 

                  

Figure 15a. Commonality of (a) 16S and (b) ITS ASVs across three long-term organic amendment trials. 

 

 

 

(a) 16S mASV similarities        (b) ITS mASV similarities 

             

Figure 15b. Commonality of (a) 16S and (b) ITS mASVs across three long-term organic amendment trials. 

 

 

Numbers: Analyses revealed no significant effect of organic amendment application on 16S 

richness (P >0.2; Table 8) in any of the trials. However, a slightly significant effect was observed on 

ITS ASV richness only in the Gleadthorpe trial. 
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Table 8. Kruskal-Wallis results for Observed ASVs along with PERMANOVA results for Jaccard distances 

assessing the effect of the different organic amendment treatments in the different experimental sites 

separately over bacterial (16S) and fungal (ITS) communities. Values at P < 0.05 are shown in bold. 

Site Gleadthorpe Harper Adams Terrington 

Barcode 16S ITS 16S ITS 16S ITS 

Numbers 
P 0.634 0.045 0.202 0.430 0.561 0.561 

E2 - 0.573 - - - - 

Types 
P 0.007 0.001 0.192 0.015 0.158 0.129 

R2 0.379 0.360 - 0.309 - - 

Abundances 
P 0.004 0.001 0.247 0.035 0.305 0.015 

R2 0.406 0.463 - 0.359 - 0.309 

 

When the ASV data from all three sites were merged and normalised (as described previously), 

again no effect of any of the organic amendments on numbers of the 16S mASVs was observed 

compared with the unamended controls or one each other (Figure 16). However, there were again 

indications that the cattle slurry treatment may have increased fungal ITS mASVs compared with 

unamended control, broiler litter and pig manure treatments. 

 

 

Figure 16. Numbers of 16S and ITS mASVs as affected by soil amendments with broiler litter (BL), cattle 

farmyard manure (cFYM), pig farmyard manure (pFYM), cattle clurry (cSlurry) or green compost (GC), 

compared with untreated controls. 
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By far the largest effect on both 16S and ITS mASV richness was due to location of the trial sites 

(Table 9). Pairwise analyses showed that 16S mASV richness was significantly higher at Terrington 

than at Gleadthorpe and Harper Adams. ITS mASV richness in Gleadthorpe was higher than at 

Harper Adams and Terrington (Figure 17). 

 

Table 9. Kruskal-Wallis results for Observed ASVs along with PERMANOVA results for Jaccard distances 

assessing the effect of spatial over bacterial (16S) and fungal (ITS) communities. Values at P < 0.05 are shown 

in bold. 
 Spatial Variation 

Barcode 16S ITS 

mASV 
richness 

P 0.002 7.4E-6 

E2 0.355 0.746 

Types of 
mASVs 

P 0.001 0.001 

R2 0.317 0.353 

Abundances 
of mASVs 

P 0.001 0.001 

R2 0.389 0.421 

 

 

 

Figure 17. Absolute 16S and ITS mASV richness across all three trials. Kruskal-Wallis general and pairwise 

results are indicated where adjusted p-value was significant (0 ‘***’, 0.001 ‘**’, 0.01 ‘*’). 
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Types: PERMANOVA analyses revealed significant differences between organic amendment 

treatments in the types of 16S and ITS ASVs present in Gleadthorpe, explaining approximately 37% 

of the variance in assigned bacterial types. Differences in the types of ITS mASV present were also 

significant between treatments at Harper Adams, explaining 31% of the variance in assigned fungal 

types (p<0.015; Table 8).  No significant effects of organic amendments on types of 16S or ITS ASVs 

were observed at Terrington.   

Further PERMANOVA analyses revealed larger significant differences (P<0.001) between the types 

of 16S and ITS mASVs present in soil from each trial site (Table 9, Figure 18). Approximately 32% 

of the variance in bacterial types and 35% in fungal types was explained overall by the site location.  

Abundances: Significant differences were also observed between the treatments in relative 

abundances of types of ITS ASVs at all three sites and of types of 16S ASVs at Gleadthorpe only 

(P<0.035, Table 8). When the data were merged, it was clearly apparent that the location of the trial 

sites had a much greater effect on both types and relative abundances of both 16S and ITS mASVs 

than did the organic amendment treatments (Figure 18). 

 

 

Figure 18. Principal Coordinate Analysis (PCoA) based on weighted and unweighted Jaccard distances 

matrices showing differences in relative abundances of 16S and ITS mASVs. 
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4.5. Long-term effects of different tillage approaches on soil bacterial and fungal 

diversity, in two sampling years 

Bacterial and fungal diversity analyses were carried out on soil samples from field trials at the Game 

and Wildlife Conservation Trust (GWCT) at Loddington in Leicestershire. Samples were collected in 

2018 (6 samples) and 2020 (12 samples) from plots with two different tillage approaches: direct-drill 

and ploughing. During the second sampling, twice as many samples were collected to intensify the 

statistical power and thus obtain more reliable results on the effect of tillage treatment on the 

microbiome. In addition, microbial diversities were compared between the two years to obtain a 

glimpse of temporal fluctuations on the microbial communities. 

 

Numbers: Analyses revealed no significant effect of tillage approach on total numbers of 16S or ITS 

ASVs (P >0.27; Table 10). In addition, no significant differences were observed in 16S number of 

ASVs when samples from the same plots were analysed between the two years.  In contrast, large 

differences were detected in ITS mASV richness between the two years explaining approximately 

65% of the variance (Table 10, Figure 19). 

 

 

Figure 19. Number of 16S and ITS mASVs at two sampling times. Kruskal-Wallis general and pairwise results 

are indicated at the top of each boxplot. 
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Types: PERMANOVA analyses revealed significant differences between tillage approaches in the 

types of ITS ASVs which explained approximately 14% of the variance, but only in samples collected 

in 2020. No similar effect of these treatment was observed in samples collected two years before 

(Table 10). No significant effects were observed on the types of 16S ASVs. In terms of temporal 

variation, analyses revealed significant differences in the types of both 16S and ITS ASVs between 

the two years (Table 10, Figure 20). 

 

Table 10. Kruskal-Wallis results for observed ASVs and PERMANOVA results for Jaccard distances assessing 

the effect of two tillage approaches and year of sampling on bacterial (16S) and fungal (ITS) communities. 

Values at P < 0.05 are shown in bold. 
 Tillage – 2018 Tillage – 2020 Sampling year 

Barcode 16S ITS 16S ITS 16S ITS 

Numbers* 
P 0.827 0.275 0.337 0.423 0.851 0.001 

E2 - - - - - 0.648 

Types of 
ASV/mASV* 

P 0.9 0.3 0.082 0.005 0.035 0.001 

R2 - - - 0.136 0.080 0.149 

Abundances 
of ASVs* 

P 0.8 0.2 0.049 0.015 0.001 0.001 

R2 - - 0.136 0.143 0.143 0.169 

*Results assessing the effect of sampling time were obtained using mAVS 

 

Abundances: Similarly, significant differences were observed between samples collected in 

different years on both 16S and ITS ASVs abundances. Also, a significant effect of tillage on both 

16S and ITS ASVs relative abundances was observed amongst samples collected in 2020 (Table 

10, Figure 20). 
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Figure 20. Principal Coordinate Analysis (PCoA) based on weighted and unweighted Jaccard distances 

matrices showing differences in relative abundances of 16S and ITS mASVs. 

 

4.6. Effects of sampling season on soil bacterial and fungal diversity 

As an additional study conducted as part of a MSc degree (Briggs, 2018), soil was sampled from the 

long-term STAR (Sustainability Trial in Arable Rotations) trial conducted by NIAB at Stanaway Farm, 

Suffolk on a heavy clay soil. This trial aimed to assess the effects of rotation and cultivation 

treatments on soil health, agronomy and production (Stobart & Morris, 2011). Wheat plots were 

sampled during spring and autumn 2018. Bacterial and fungal diversities were compared in both 

seasons to evaluate temporal changes across two different seasons/cropping stage. 

 

Numbers: Analyses revealed no significant effect of cultivation on 16S or ITS ASV richness (P 

>0.23; Table 11) in either season. However, large significant differences were detected in both 16S 

and ITS mASV richness between the two sampling occasions, explaining approximately 70% of the 

variance (P< 0.00003, Table 11). The total numbers of 16S or ITS mASVs were both higher when 

soil was sampled in Autumn (Figure 21). 
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Figure 21. Absolute 16S and ITS mASV richness at two sampling times. Kruskal-Wallis general and pairwise 

results are indicated where the adjusted p-value was significant (0 ‘***’, 0.001 ‘**’, 0.01 ‘*’). 

 

 

Types: PERMANOVA analyses revealed significant differences between cultivation treatments on 

the types of ITS ASVs, which explained 30% of the overall variation, but only in samples collected 

in spring. However, this effect of these treatments was not observed in samples collected in the 

autumn (Table 11, Figure 22). Analyses showed large differences in the types of both 16S and ITS 

ASVs between the two sampling times. 

 

Table 11. Kruskal-Wallis results for observed ASVs and PERMANOVA results for Jaccard distances assessing 

the effect of the different tillage approaches and sampling times on bacterial (16S) and fungal (ITS) 

communities. Values at P < 0.05 are shown in bold. 

 Cultivation 
Spring 

Cultivation 
Autumn 

Sampling season 

Barcode 16S ITS 16S ITS 16S ITS 

ASV 
richness* 

P 0.238 0.379 0.468 0.287 5.31E-05 3.21E-05 

E2 - - - - 0.696 0.740 

Types of 
ASVs* 

P 0.153 0.010 0.331 0.155 0.001 0.001 

R2 - 0.311 - - 0.105 0.194 

Abundances 
of ASVs* 

P 0.171 0.349 0.284 0.093 0.001 0.001 

R2 - - - - 0.120 0.138 

*Results assessing the effect of sampling time were obtained using mAVS 
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Abundances: there were significant effects of cultivation on the relative abundances of both 16S 

and ITS ASVs. Large differences were also observed between the two sampling occasions in both 

16S and ITS ASV abundances (Table 11, Figure 22). 

 

 

Figure 22. Principal Coordinate Analysis (PCoA) based on weighted and unweighted Jaccard distances 

matrices showing differences in relative abundances of 16S and ITS mASVs. 

 

4.7. Long-term effects of re-ridging and inter-row companion crops or mulching 

on soil bacterial and fungal diversity in asparagus production 

Estimated diversity of both bacteria and fungi were independently compared across the long-term 

field trial conducted by Cranfield University to investigate the effects of companion crops, mulching 

with either straw or PAS100 green compost, re-ridging and shallow soil disturbance between 

seasons on inter-row soil compaction during asparagus cultivation (Mašková et al., 2021). 

Metabarcoding was used to compare any effects on the microbiome resulting from re-ridging 

between crops (Table 12) and any secondary effects of using inter-row companion crops or mulching 

with PAS-100 green compost compared with leaving bare soil between the asparagus beds (Table 

13). 
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Table 12. Kruskal-Wallis results and PERMANOVA results for Jaccard distances comparing the effects of re-

ridging and other secondary soil treatments on the diversity of bacterial (16S) and fungal (ITS) ASVs (values 

where P<0.05 shown in bold). 

Treatment Groups 
+ or - re-ridging  

 Bare soil 
+ or - re-ridging  
Companion crop 

+ or - re-ridging  
Mulch 

+ or - re-ridging  
 All treatments   

Barcode 16S ITS 16S ITS 16S ITS 16S ITS 

ASV 
richness 

P 0.077 0.564 0.077 0.043 0.083 0.773 0.108 0.312 

E2 - - - 0.514 - - - - 

Types of 
ASVs 

P 0.21 0.259 0.119 0.304 0.205 0.343 0.002 0.022 

R2 - - - - - - 0.067 0.055 

Abundances 
of ASVs 

P 0.379 0.398 0.289 0.199 0.245 0.611 0.012 0.031 

R2 - - - - - - 0.068 0.063 

   

Table 13. Kruskal-Wallis results and PERMANOVA results for Jaccard distances comparing the effects of 

secondary soil treatments on diversity of bacterial (16S) and fungal (ITS) ASVs (values where P<0.05 shown 

in bold). 

Treatment Groups 
Bare soil 

(+ or - shallow 
disturbance) 

Companion crop 
(Mustard or 

Rye) 

Mulch 
(PAS100 or 

Straw) 

Barcode 16S ITS 16S ITS 16S ITS 

ASV 
richness 

P 0.157 0.021 0.289 0.564 0.564 0.773 

E2 - 0.722 - - - - 

Types of 
ASVs 

P 0.181 0.036 0.567 0.599 0.149 0.049 

R2 - 0.182 - - - 0.174 

Abundances 
of ASVs 

P 0.117 0.061 0.572 0.329 0.203 0.362 

R2 - 0.175 - - - - 

 

Numbers:  No significant effect of re-ridging was observed on the total number of 16S ASVs (P >0.1; 

Table 12). However, re-ridging significantly increased the total number of ITS ASVs, but only in 

samples where a companion crop had been grown between the rows (Figure 23). Shallow soil 

disturbance within the bare soil treatment also significantly reduced ITS ASV richness (Table 13). 

No effect of growing companion crops on the types of ITS ASV was observed. 
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(a)  

   

 

(b) 

 

Figure 23. Numbers of (a) 16S and (b) ITS ASVs as affected by inter-row treatments of bare soil, companion 

crops or mulch, with (R) or without (NR) annual re-ridging of the asparagus beds.  
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Types: No significant effect of re-ridging on the types of 16S and ITS ASVs was observed in any 

specific treatment group (Table 12). However, when all sample were analysed together a significant 

effect was observed in types of both 16S and ITS ASVs with a marginal effect size of approximately 

7% and 6%, respectively.  

Abundances: Significant differences in relative abundances of both 16S and ITS ASV types, 

between both the re-ridging treatments and the secondary treatment groups, were also observed 

only when all samples were analysed together (p<0.031; Tables 11 and12). 

The standardised approach was used to compare bacterial and fungal diversity between treatment 

groups: Bare soil, companion crop and mulch. There were no significant effects of treatments on the 

number of 16S or ITS ASVs, whereas the effects on types and abundances of both were highly 

significant (Table 14). Figure 24 shows the community composition of bacterial and fungal 

microbiomes in these soils to be roughly similar when ASVs were identified at phylum level. 

However, Figure 25 shows that a high proportion of unique ASVs were associated with bare soil, 

mulch and companion crop treatments, with only around one quarter of bacteria and fungi unaffected 

by any of the three soil treatments. 

Table 14. Kruskal-Wallis results and PERMANOVA results for Jaccard distances comparing the effects of all 

treatment groups on bacterial (16S) and fungal (ITS) ASV diversity (values at P<0.05 shown in bold). 

 Treatment 
Groups 

Barcode 16S ITS 

ASV 
richness 

P 0.77 0.981 

E2 - - 

Types of 
ASVs 

P 0.005 0.006 

R2 0.119 0.108 

Abundances 
of ASVs 

P 0.005 0.018 

R2 0.122 0.119 
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Figure 24. Comparison of bacterial and fungal soil community compositions across three treatment groups. 

Relative abundance of assigned phyla to (a)16S and (b) ITS ASVs across all samples from soils treated with 

mulch (outer), companion crops (middle) and bare soil (inner). 

 

 

Figure 25. Commonality of (a) 16S and (b) ITS ASVs across three treatment groups. 

 

4.8. Long-term effects of drainage on soil bacterial and fungal diversity 

Estimated diversity of both bacteria and fungi were independently compared across a field trial 

conducted at ADAS Boxworth in Cambridgeshire, to compare the effects of drainage in a heavy clay 

soil on the microbiome. Two treatments were compared: improved drainage (mole drains) and poor 

drainage (undrained). 

 

Numbers: Analyses revealed no significant effect of drainage approaches on 16S ASV richness. 

However, Kruskal-Wallis analysis detected a large significant effect over the absolute richness of 

ITS ASVs, explaining approximately 55% of the variance due to the drainage treatment (Table 15) 

and this was also consistent with the effect on ITS phylogenetic relatedness (Table 16). 
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Table 15. Kruskal-Wallis and PERMANOVA results for ASV richness and Jaccard distances comparing the 

effects of both drainage approaches on bacterial (16S) and fungal (ITS) ASV diversity (values at P<0.05 shown 

in bold). 

 Drainage 
approach 

Barcode 16S ITS 

ASV 
richness 

P 0.749 0.010 

E2 - 0.556 

Types of 
ASVs 

P 0.678 0.393 

R2 - - 

Abundances 
of ASVs 

P 0.805 0.01 

R2 - 0.149 

 

Types: no significant differences were observed between drainage approaches in the types of 16S 

or ITS ASVs (P > 0.4, Table 15). However, a small effect was detected in UniFrac distances 

explaining approximately 14% of the variance (Table 16). 

 

Table 16. Kruskal-Wallis and PERMANOVA results for Faith-PD and Unifrac distances comparing the effects 

of both drainage approaches on bacterial (16S) and fungal (ITS) ASV diversity with phylogenetic relatedness 

into account (values at P<0.05 shown in bold). 

 Drainage 
approach 

Barcode 16S ITS 

Faith PD 
P 0.631 0.010 

E2 - 0.556 

Unweighted 
UniFrac 

P 0.527 0.009 

R2 - 0.138 

Weighted 
UniFrac 

P 0.565 0.012 

R2 - 0.332 

 

 

Abundances: There were significant differences between drainage treatments in the types of ITS 

(P = 0.01) ASVs which explained 15% of variance in ASV abundances and this was consistent with 

the weighted UniFrac distances, however, more than double the variance in ASV relative 

abundances was explained in this case (Tables 14 and 15). No significant effects of drainage on 

types or relative abundances of 16S ASVs (p > 0.5, Table 15 and 16) were observed. 
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4.9. Correlations between microscopic observation and metabarcoding of 

mesofauna diversity 

Estimated diversity of arthropodal communities were compared across the pH field trial, enabling 

comparison of any long-term effects on the mesofauna of soil pH gradients and crops stages in a 

rotation. In addition, this dataset was used for evaluating correlation between sequencing and 

microscopy data following the procedures described in 3.3.2. 

Numbers: Analyses revealed significant effects of the pH gradient and crop stages on CO1 ASVs 

richness and Shannon entropy (P <0.041; Table 17). No effect of pH levels was observed on species 

from the microscopy datasets. However, the effect of crop stages was significant over species 

richness and Shannon entropy in this dataset. Although no significant effect, pairwise comparison 

showed a similar trend between the different pH level on both datasets and opposite patterns on 

crop stages when results from sequencing and microscopy data were compared (Figure 26). 

 

Table 17. Kruskal-Wallis results for richness and Shannon entropy assessing the effect of pH gradient and 

crops different stages over arthropodal mASVs and species from sequencing and microscopy datasets, 

respectively. Values at P < 0.05 are shown in bold. 

Method Sequencing Microscopy 

Treatment pH Crop pH Crop 

Richness 
P 0.023 0.003 0.248 0.009 

E2 0.148 0.258 - 0.194 

Shannon 
P 0.002 0.041 0.152 0.004 

E2 0.267 0.120 - 0.229 
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Figure 26. Numbers of arthropodal mAVS (Sequencing) and species (Microscopy) affected by different pH 

levels (top) and crop stages (bottom). 

 

Correlation analysis: analyses revealed no correlation between datasets for both observed 

features and Shannon entropies (Figure 27; Table 18). However, when both unweighted Jaccard 

distances were tested with Mantel, a significant but weak correlation was observed (Figure 28). 
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Figure 27. Spearman correlation chart between sequencing and microscopy richness data. Bar-plots show a 

normal sample distribution for both datasets. The scatter plot showed the low level of correlation between the 

richness values of both datasets. 

 

 

Table 18. Spearman and Pearson correlation results between sequencing and microscopy richness and 

Shannon entropy data. 

Method Spearman Pearson 

Richness 
P 0.509 0.315 

cor -0.1 -0.15 

Shannon 
P 0.130 0.173 

cor 0.267 -0.2 

 

 

 

P = 0.5093 
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Figure 28. correlation plot representing unweighted Jaccard pairwise distances from sequencing datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P = 0.012 

Spearman rho = 0.145955  
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5. Discussion 

5.1. Effect of long-term pH management on the soil microbiome 

Much is already known of the effect of soil pH gradients on bacterial and fungal community structures 

(Fierer & Jackson, 2006; Rousk et al., 2010). Bacterial correlations are usually stronger than fungal, 

corresponding with wider pH ranges observed for optimal growth of the fungal community. A recent 

metabarcoding analysis (George et al., 2019) showed fluctuations of microbial diversity in 436 

locations in 7 different temperate ecosystems across Wales, UK. In their analysis, pH was the best 

predictor for bacterial and second best for fungal diversity. Here, these findings were confirmed using 

the standardised metabarcoding approach at the controlled experimental site at Craibstone, which 

included pH levels within a range common to most agricultural systems (Msimbira & Smith, 2020). 

In response to pH, strong divergent trends in all three measured diversity metrics (numbers, types 

and abundances) were confirmed for both bacteria and fungi/oomycetes. These findings confirmed 

that small changes in soil pH can produce strong changes in community compositions.  

The sequence data obtained was also successfully used to predict potential biomarkers within the 

bacterial and fungal communities, that appeared to fluctuate most in response to pH levels. A larger 

number of bacterial phyla were associated with pH 4.5, but more fungal phyla biomarkers were found 

at pH 7.5. However, when the total number of biomarkers across all taxonomic levels was analysed, 

significantly more bacterial biomarkers were found at pH 7.5 than at the other pH levels, whereas 

similar number of fungal biomarkers were found at each pH level. It is proposed that the total number 

of biomarkers is a good indicator of the strength of selection pressure exerted by a given treatment 

on biological communities.  

It was also possible to some degree to use the sequence data obtained, to predict functional 

divergence within soil microbial communities as they diversify in response to different pH conditions. 

This represents one of the first attempts to use this kind of approach in the diagnosis of soil health. 

The FUNGUILD bioinformatics tool was demonstrated to predict the functions of biomarkers, at 

family, genus and species levels, although around one-third of these remained “unassigned” to any 

functional group. The distribution of different assigned fungal guilds was found to differ with soil pH, 

with symbiotrophs significantly more abundant at more neutral pH (6.0 and 6.5), while pathotrophs 

were more abundant at pH 7.5. Bacterial functionality predictions were as yet too inconclusive to 

reach any reliable conclusions due to the lack of taxonomic annotation at species level amongst the 

available databases. This approach to prediction of microbial functional in soil communities is 

expected to increase with the future development and combination of taxonomic and functional 

sequence databases. In the interim, data have been provided to support the hypothesis that 

fluctuation in diversity also translates into functional changes in agricultural soils.  
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5.2. Effects of long-term inorganic fertiliser application on the soil microbiome 

There is a lack of precise information on the long-term impact of fertilisers on microbial communities. 

Previous studies have attempted to assess microbial fluctuation with different fertiliser treatments, 

but their conclusions are conflicting (Zhong et al., 2010). Positive effects are related to increased 

microbial nutrient availability from fertilisers sustaining increased populations, also promoted by 

increased exudates from crop roots (Lehman et al., 2015). The current study evaluated the long-

term effect of fertiliser application over almost a century on soil bacterial and fungal communities. 

Results suggest that the fungal community may have been affected in terms of the relative 

abundance of its species rather than in the richness or types of species present. No particular phylum 

was significantly affected by the regular use of fertiliser, in disagreement with previous observations 

(Peine et al., 2019; Silva et al., 2017). Discrepancies between these findings may be due to 

methodological differences, including sampling depth, molecular and bioinformatic approaches, and 

sequence databases used in the analyses, highlighting the necessity for a standardized pipeline that 

can be used to compare diverse studies of soil microbial communities from different locations. 

 

5.3. Effect of long-term organic amendments on the soil microbiome 

Studies on the effects of organic soil amendments on bacterial and fungal communities have 

reported contradictory results (Li et al., 2019). This may be due to the wide spatial variation in 

richness and diversity of microbial communities in soils. In a recent study across 12 European long-

term experiments, Hannula et al. (2021) reported over two thirds of the fungal species described 

were unique for each of the countries involved. Moreover, some soil management practices had a 

variable effect on the diversity of fungal communities depending on the site location and no 

significant effects of different sources of organic amendment was observed in this case. This study 

evaluated the effect of organic amendments in three long-term trial sites on soil bacterial and fungal 

communities. As with results of the effects of long-term inorganic fertiliser application, the organic 

amendments results appeared to affect Numbers of the fungal rather than the bacterial community. 

These results suggest a higher sensitivity of fungal communities to organic/synthetic fertilisers 

application, at least at the time of sampling after harvest. However, the most relevant factor driving 

the composition and structure of both bacterial and fungal communities was the geographical 

location. The three experimental sites are distantly located, and their soil types differ with loamy sand 

(6% clay), sandy loam (12% clay) and silty clay loam (28% clay) at Gleadthorpe, Harper Adams and 

Terrington, respectively. A high clay content is thought to negatively affect DNA extraction from the 

soil matrix (Högfors-Rönnholm et al., 2018). The average DNA yield obtained from Terrington 

samples was the lowest (42 ng/µL), although average DNA yield from Harper Adams (51 ng/µL) and 

Gleadthope (48.6 ng/µL) were similar even though soils from the former contained double the clay 
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content. Clay content did not, however, appear to affect the diversity metrics where, for example, 

Terrington samples showed the highest bacterial richness. The conclusion of microbial communities 

being mostly affected by their geographical location not only matches with the findings of Hannula 

et al. (2021) but can also explain the different results observed in the three experimental sites despite 

similar organic amendment treatments at each site. Interestingly, the largest effect of organic 

amendments on microbial diversity was observed at the Gleadthorpe site, suggesting that low clay 

soils may be more sensitive to these treatments. 

 

5.4. Effect of sampling time and management practices on the soil microbiome 

The analyses carried out on the experimental sites sampled in different years showed that the 

differences both in numbers and in types and abundance are significant for bacterial and fungal 

communities. Considering the effect size explained by the sampling time, it is suggested that the 

differences between numbers of both 16S and ITS ASVs are especially pronounced between 

different seasons. 

These results in conjunction with those obtained from the experimental sites of organic amendments 

suggest that the effects of management practices may vary depending on place, time and season of 

the year. 

 

5.5. Long-term effects of re-ridging and inter-row companion crops or mulching 

on soil bacterial and fungal diversity in asparagus production 

Soil treatments in the asparagus trial were mainly designed to alleviate the effects of compaction, a 

common problem during highly mechanised asparagus production. Results from the current study 

have also indicated some influences of these treatments on the soil microbiology. Although the re-

ridging treatment appeared to have no effect on number of bacterial or fungal ASVs, there was some 

evidence that shallow soil disturbance had some effect on reducing fungal richness at the time of 

sampling. Other interacting factors such as the use of companion crops and mulches appeared to 

have variable effects on the types and relative abundances of different bacterial and fungal taxa.  

 

5.6. Standardised approach for combined analyses of the microbiome across 

different studies 

A standardised approach was formulated and tested here for the first time that allows data from 

multiple studies to be merged and normalised in such a way that the effects of multiple factors can 

be evaluated on members of the soil community that are common to each study. Many studies on 

soil biology have reported the effect of agricultural management practices, however the 
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implementation of available diversity indexes has differed between studies. For that reason, a 

standardised analysis approach was proposed here and demonstrated that is viable to use it to test 

the extent to which bacterial and fungal diversities change in response to key soil managements 

across time and spatially dispersed datasets.  

The advantage of merging ASV tables lies in being able to control for the effects of normalisation 

(i.e. all data are normalised together in the same way), and that more holistic analyses can be 

conducted, including being able to identify any differences in the direction of effects and to identify 

clusters of highly similar ASVs between studies. Together this allows comprehensive comparisons 

of the nature of effects and the types of taxa that are in common or different between different 

treatments in different studies. The identification of matching ASVs is possible because identical 

DNA sequences underlying ASVs produce the same MD5 identification tag between sequence runs 

with dada2 making ASVs from independent trials directly comparable, but only if sequences are in 

the same orientation and trimmed/truncated to the same length and sites. However, it is highly likely 

that independent studies will not have trimmed/truncated ASV reads to the same length and sites. 

To understand which highly similar ASVs are common across independent studies, ASVs in the 

merged table were clustered and analysed into mASVs, each of greater than 98% identity. Crucially, 

the analyses of mASVs then allow the hypothesis [that long-term independent pH and fertiliser 

managements have applied differential sustained selection pressures that have resulted in diverged 

and differentially adapted soil microbial communities] to be tested, by comparing the differences and 

similarities of communities between studies. 

In the first instance, the utility of a standardised DNA metabarcoding method to assess agricultural 

soil microbial diversity was presented and validated, by evaluating the effect of two long-term 

agricultural trials that have consistently manipulated pH and fertiliser input for over 60 years. 

Comparisons of the analyses from both separate and then merged data have provided support for 

the hypothesis that long-term independent pH and fertiliser managements have applied differential 

sustained selection pressures that have resulted in diverged and differentially adapted soil microbial 

communities. Further, the DNA sequence data rejected the hypothesis that the magnitude of 

differences in soil biology due to sustained differential pH and fertiliser manipulations were 

approximately similar. Both individual and merged analyses showed the effect size of pH to be 

approximately 6-times larger than the effect of fertiliser additions.  

Analysis of 16S and ITS ASVs in this study showed that the composition of types of bacterial and 

fungal species identified as ASVs differed between the two trials. A majority of both 16S and ITS 

ASVs were unique to the pH trial and almost half of the ITS ASVs were unique to the fertiliser trial. 

There could be methodological reasons for these dissimilarities between trials including differences 

in sampling times and differences in performance between different sequencing runs. The latter was 

addressed to some extent by the implementation of the SRS normalization method. This performs a 
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similar approach to traditional rarefaction (reducing all sample reads to a given sampling depth) but 

with a more conservative approach in terms of preserving ASVs richness (Beule & Karlovsky, 2020). 

Nonetheless, the ideal normalization method with different ASVs library size continues to be a topic 

of discussion (McMurdie & Holmes, 2014; Weiss et al., 2017). The approach taken in this study was 

to first merge datasets from both trials and normalize the merged dataset by SRS. Differences 

between the trials was then analysed using the standardized pipeline to compare the effects of the 

pH and fertiliser treatments with the results obtained from the separated datasets.  

Analyses of the effects of pH gradient and fertiliser application using the merged datasets showed 

similar results to those obtained using the two individual datasets except for the effect of fertilisers 

on the types of fungal ASVs, which was only found significant when the merged data were analysed. 

In the case of the two Craibstone trials, identical methodology was applied in the DNA extraction, 

metabarcoding and analysis of both trials. Moreover, the soil conditions were very similar with the 

two trials being located less than 100m apart. It is therefore unsurprising that the analyses of 

individual and merged datasets gave rise to very similar findings.  Both approaches showed that pH 

but not fertiliser significantly affected fungal and bacterial taxa and both pH and fertiliser significantly 

affected the types of bacterial and fungal taxa and their relative abundances. This indicates a 

possible sorting effect of differential natural selection variously imposed by different pHs and 

fertilisers. Furthermore, both approaches showed the relative effect of pH was greater than that of 

fertiliser. Inferences of the sizes of effects between studies will be particularly useful to increase an 

understanding of the relative size of effects of specific agricultural and soil treatment on soil biological 

communities. 

The same standardised approach was used to compare data from a further three geographically 

remote trials (at ADAS Gleadthorpe, ADAS Terrington and Harper Adams University) that were 

designed to investigate the long-term effects of repeated soil amendments with organic matter from 

various sources.  In this case, analysis of the merged data clearly showed that, although significant 

differences were found in the types and relative abundances of 16S and ITS mASVs between 

amended and non-amended soils, these effects were much smaller than the differences observed 

between locations of each trial (see Figure18). It was therefore concluded that whilst long-term 

independent organic amendments had applied differential selection pressures that resulted in 

diverged soil microbial communities, the magnitudes of these differences in soil biology created as 

a result of agronomic managements were much less than those observed between the natural 

biological communities adapted at each of the locations. It is assumed that differences in both soil 

types and conditions at sampling had contributed to the large effects observed between locations. 

These results indicate the true value of being able to merge datasets from multiple studies, rather 

than to extrapolate findings from any individual study, when forming general recommendations on 

the effects of soil management on soil microbiology.  
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The importance of the standardized approach to DNA analysis proposed here therefore roots in the 

necessity to implement the same metric across many different studies with greater expected 

variation than that observed between only the few sites studied here. Many individual studies on soil 

biology have reported the effect of agricultural management practices, however the implementation 

of available diversity indexes has differed between studies. For that reason, a standardised 

combined metabarcoding approach is presented here: it has been demonstrated that it is viable to 

use it to test the extent to which bacterial and fungal diversities change in response to key soil 

managements and the need to assess the magnitude of those changes across multiple datasets. 

 

5.7. Potential for a molecular soil health testing service for UK growers and 

agronomists. 

Standardised methods evaluated within this project have demonstrated that it is possible to use 

metabarcoding to compare the diversity of bacteria, fungi and, to a more limited extent, mesofauna 

across samples of soil. As a trial venture, these approaches have already been used to assess 

samples of arable soils submitted from growers (including samples from the field sites selected in 

this project) through the Big Soil Community initiative at Fera Science Ltd. 

(https://www.fera.co.uk/news/big-soil-community). This involves a community effort between 

growers, agronomists and Fera scientists to investigate the diversity of UK soils and understand how 

it can affect crop production and long-term soil health. Since the launch in 2018, over 400 samples 

have been analysed for fungal and bacterial diversity and an additional nematode screen was also 

introduced in 2021. Samples have mostly come from country-wide arable growers, enabling 

comparisons to be made between different variables, including locations, soil types, organic and 

conventional systems and crop yields. 

Participating farmers have submitted samples in October/November and received results in January 

as two reports; the first detailing the diversity in each soil sample and highlighting the most abundant 

taxa of interest (including beneficial organisms and pathogens), and the second anonymously 

benchmarking each result against the wider community picture. Initially costed at £250 per sample, 

participating growers are aware that they are contributing to the development and interpretation of 

the tests as well as understanding the diversity of their soils. It is anticipated that the cost per sample 

will fall as interest in the scheme increases. Sustainability of the scheme is dependent on the 

usefulness of the information to each grower. Automated methods that identify key taxa and their 

relative abundances from the soil DNA, developed in this project, are key to increasing the value of 

information that can be fed back to growers. For example, methods that can automatically predict 

functions associated with taxa identified within the soil microbial communities will help to add 

practical value to the results by not only identifying the most abundant organisms but also estimating 

whether they are providing key ecological services and whether they may be harmful or beneficial to 

https://www.fera.co.uk/news/big-soil-community
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crops. It is expected that this approach will facilitate the identification of bioindicators common to all 

samples, allowing the development of more targeted field tests that could monitor changes in the 

behaviour of these indicators as influenced by factors such as cropping practices, soil management, 

soil types and climate. Furthermore, standardised analytical procedures developed in this project, 

that allow analysis of merged DNA sequencing data, will permit comparisons of field assessments 

from multiple sources, even when there is variation in the methods used to collect the data.  This will 

open the investigation of factors contributing to biological soil health to a much wider breadth of soils 

and agroecological systems both across the UK and internationally. 
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